Chromatin-level regulation of neural stem/progenitor cell fate
نویسندگان
چکیده
منابع مشابه
Mitochondrial DNA damage level determines neural stem cell differentiation fate.
The mitochondrial DNA (mtDNA) of neural stem cells (NSCs) is vulnerable to oxidation damage. Subtle manipulations of the cellular redox state affect mtDNA integrity in addition to regulating the NSC differentiation lineage, suggesting a molecular link between mtDNA integrity and regulation of differentiation. Here we show that 8-oxoguanine DNA glycosylase (OGG1) is essential for repair of mtDNA...
متن کاملSpecification of neural cell fate and regulation of neural stem cell proliferation by microRNAs.
In the approximately 20 years since microRNAs (miRNAs) were first characterized, they have been shown to play important roles in diverse physiologic functions, particularly those requiring coordinated changes in networks of signaling pathways. The ability of miRNAs to silence expression of multiple gene targets hints at complex connections that research has only begun to elucidate. The nervous ...
متن کاملRegulation of xylem cell fate
The vascular system is organized throughout the plant body for transporting water, nutrients, and signaling molecules. During vascular development, xylem, phloem, and procambial/cambial cells are produced in a spatiotemporally organized manner. Several key regulators for xylem cell patterning and differentiation have been discovered, including auxin, cytokinin, CLE peptides, microRNAs, HD-ZIPII...
متن کاملChromatin-level regulation of biosynthetic gene clusters.
Loss-of-function Aspergillus nidulans CclA, a Bre2 ortholog involved in histone H3 lysine 4 methylation, activated the expression of cryptic secondary metabolite clusters in A. nidulans. One new cluster generated monodictyphenone, emodin and emodin derivatives, whereas a second encoded two anti-osteoporosis polyketides, F9775A and F9775B. Modification of the chromatin landscape in fungal second...
متن کاملSimultaneous regulation of miR-451 and miR-191 led to erythroid fate decision of mouse embryonic stem cell
Objective(s): Various microRNAs (miRNAs) are expressed during development of mammalian cells, when they aid in modulating gene expression by mediating mRNA transcript cleavage and/or regulation of translation rate. miR-191 and miR-451 have been shown to be critical regulators of hematopoiesis and have important roles in the induction of erythroid fate decision. So, the aim of this study is inve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IBRO Reports
سال: 2019
ISSN: 2451-8301
DOI: 10.1016/j.ibror.2019.07.178